Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia.

نویسندگان

  • Pierre Asselin
  • Steven Knezevic
  • Stephen Kornfeld
  • Christopher Cirnigliaro
  • Irina Agranova-Breyter
  • William A Bauman
  • Ann M Spungen
چکیده

UNLABELLED Historically, persons with paralysis have limited options for overground ambulation. Recently, powered exoskeletons have become available, which are systems that translate the user's body movements to activate motors to move the lower limbs through a predetermined gait pattern. As part of an ongoing clinical study (NCT01454570), eight nonambulatory persons with paraplegia were trained to ambulate with a powered exoskeleton. Measurements of oxygen uptake (VO2) and heart rate (HR) were recorded for 6 min each during each maneuver while sitting, standing, and walking. The average value of VO2 during walking (11.2 +/- 1.7 mL/kg/min) was significantly higher than those for sitting and standing (3.5 +/- 0.4 and 4.3 +/- 0.9 mL/kg/min, respectively; p < 0.001). The HR response during walking was significantly greater than that of either sitting or standing (118 +/- 21vs 70 +/- 10 and 81 +/- 12 beats per minute, respectively: p < 0.001). Persons with paraplegia were able to ambulate efficiently using the powered exoskeleton for overground ambulation, providing potential for functional gain and improved fitness. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; NCT01454570; "The ReWalk Exoskeletal Walking System for Persons with Paraplegia (VA_ReWalk)"; https://clinicaltrials.gov/ct2/show/NCT01454570.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of exoskeletal joint constraint and passive resistance on metabolic energy expenditure: Implications for walking in paraplegia

An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The ex...

متن کامل

Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis

BACKGROUND Powered exoskeletons are designed to safely facilitate ambulation in patients with spinal cord injury (SCI). We conducted the first meta-analysis of the available published research on the clinical effectiveness and safety of powered exoskeletons in SCI patients. METHODS MEDLINE and EMBASE databases were searched for studies of powered exoskeleton-assisted walking in patients with ...

متن کامل

RESPONSES OF OXYGEN CONSUMPTION, HEART RATE AND PERCEIVED EXERTION TO CRUTCH WALKING: A COMPARISON BE TWEEN PAR APLEGIC AND ABLE-BODIED SUBJECTS

In this study, 10 normal volunteers and 5 sports-trained paraplegics with lesions between T6 and L2 were studied whilst walking with axillary crutches and knee-anlde-foot orthoses. All subjects walked at their preferred speed on a figureof- eight track. Normal subjects also walked at slower and faster speeds. Oxygen consumption, heart rate and rating of perceived exertion were measured. In...

متن کامل

Powered Exoskeletons for Walking Assistance in Persons with Central Nervous System Injuries: A Narrative Review.

Individuals with central nervous system injuries are a large and apparently rapidly expanding population-as suggested by 2013 statistics from the American Heart Association. Increasing survival rates and lifespans emphasize the need to improve the quality of life for this population. In persons with central nervous system injuries, mobility limitations are among the most important factors contr...

متن کامل

A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation

A quasi-passive leg exoskeleton is presented for load-carrying augmentation during walking. The exoskeleton has no actuators, only ankle and hip springs and a knee variabledamper. Without a payload, the exoskeleton weighs 11.7 kg and requires only 2 Watts of electrical power during loaded walking. For a 36 kg payload, we demonstrate that the quasi-passive exoskeleton transfers on average 80% of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of rehabilitation research and development

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2015